Choice Models with a Default/Status-Quo Alternative¶
Status-Quo-Biased Undominated Choice (Bewley model)¶
[Bewley, 2002; Mandler, 2004; Masatlioglu and Ok, 2005; Gerasimou, 2016]
A general dataset with default/status quo alternatives \(\mathcal{D}\) is explained by status-quo-biased undominated choice (Bewley model) if there exists a strict partial order \(\succ\) on \(X\) such that for every decision problem \((A,s)\) in \(\mathcal{D}\)
\[\begin{split}\begin{array}{llc}
C(A,s)=\{s\} & \Longleftrightarrow & \text{$x\nsucc s$ for all $x\in A$}\\
& &\\
C(A,s)\neq \{s\} &\Longleftrightarrow & C(A,s)=
\left\{
\begin{array}{lc}
& z\nsucc x\; \text{for all $z\in A$}\\
x\in A: &\text{and}\\
& x\succ s
\end{array}
\right\}
\end{array}\end{split}\]